

Available online at www.sciencedirect.com

Biochimica et Biophysica Acta 1655 (2004) 347-352

www.bba-direct.com

Review

Time-resolved step-scan Fourier transform infrared investigation of heme-copper oxidases: implications for O_2 input and H_2O/H^+ output channels

Constantinos Koutsoupakis, Eftychia Pinakoulaki, Stavros Stavrakis, Vangelis Daskalakis, Constantinos Varotsis*

Department of Chemistry, University of Crete, 71409 Heraklion, Crete, Greece
Received 11 March 2003; received in revised form 21 May 2003; accepted 25 June 2003

Abstract

We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS²-FTIR) spectroscopy to investigate the dynamics of the heme-Cu_B binuclear center and the protein dynamics of mammalian aa_3 , Pseudomonas stutzeri cbb_3 , and caa_3 and ba_3 from Thermus thermophilus cytochrome oxidases. The implications of these results with respect to (1) the molecular motions that are general to the photodynamics of the binuclear center in heme-copper oxidases, and (2) the proton pathways located in the ring A propionate of heme a_3 -Asp372-H₂O site that is conserved among all structurally known oxidases are discussed.

© 2004 Elsevier B.V. All rights reserved.

unambiguously.

1. Introduction

Cytochrome oxidase sustains mitochondrial electron transport and linked ATP synthesis by catalysing the fourelectron reduction of dioxygen to water [1]. Among oxygenmetabolizing heme enzymes, cytochrome oxidase is unique in being susceptible to high time resolution spectroscopic investigation of its reaction time course and of the intermediates, partially reduced oxygen structures that occur in the binuclear center during oxygen reduction [2-10]. Substantial progress has been made in gaining a molecular level of understanding of the structures for many intermediates in the O₂/enzyme reaction. The time-resolved resonance Raman (TR³) approach used by Babcock's, Rousseau's, and Kitagawa's groups, although under different experimental conditions, allowed the identification of the heme a_3 iron-bound oxy, ferryl, and hydroxyl species that occur at various stages in the mechanism [2-10]. There appears now to be general consensus as to the occurrence of these species, although the precise details of the structure of the

respectively. Where k_1 and k_{-1} represent the reversible binding of CO to Cu_B, and k_2 is the first-order transfer of CO from Cu_B to the heme Fe [23]. In Scheme 2, the Cu_B¹⁺-

CO complex is fully developed within 1 ps subsequent to

CO photolysis from heme a_3 , demonstrating the absence of

activation barriers to the CO transfer from heme a_3 to Cu_B

[23]. The state denoted by an asterisk represents a non-

P intermediate and the relationship between the electron transfer events and its formation remain to be determined

The binding and release of small molecular ligands from

the binuclear heme-Cu_B center in cytochrome oxidase is a

complex process that involves ligand motion through the

protein and extensive changes in the heme electronic struc-

ture and molecular conformation. Studies of CO adducts of

cytochrome oxidase have been shown to be important probes of the active site, and photodissociation and recombination studies have revealed the dynamic processes that occur in the binuclear center [11–22]. In order to determine the molecular basis for the function of heme-copper oxidases, it is necessary to understand the interactions between the heme-bound ligands and the residues in their distal environment. Ultimately, this should lead to an understanding of the ligand kinetic behavior and the active site(s) properties. The binding and photodynamics of CO to heme-copper oxidases proceed according to Schemes 1 and 2,

Abbreviations: CcO, cytochrome c oxidase; FTIR, Fourier transform infrared; TR-FTIR, time-resolved Fourier transform infrared; MCT, mercury cadmium telluride; RR, resonance Raman

^{*} Corresponding author. Fax: +30-2810-393601. *E-mail address:* varotsis@edu.uoc.gr (C. Varotsis).

$$Fe^{2+}Cu_B^{1+} + CO \underset{k_{-1}}{\longrightarrow} Fe^{2+}, Cu_B^{1+} - CO \underset{k_{-2}}{\longrightarrow} Fe^{2+} - CO, Cu_B^{1+}$$

$$A \qquad B$$
(1)

Scheme 1.

equilibrium heme a_3 state characterized by an upshifted Fe—His stretching vibration which, in the mammalian aa_3 oxidase, relaxes to the equilibrium reduced species at times >10 µs [24].

Recently, we and others have applied time-resolved stepscan Fourier transform infrared spectroscopy (TRS²-FTIR) to investigate the protein dynamics of heme-copper oxidases at room temperature [14,17,19–22]. It has been demonstrated that the dynamics of a large protein complex such as cytochrome oxidase can be resolved on the single vibrational level with TRS²-FTIR spectroscopy. In this work, we present a comprehensive TRS²-FTIR study of bovine cytochrome aa_3 , cytochrome cbb_3 from $Pseudomonas\ stutzeri$, and ba_3 and caa_3 from $Thermus\ thermophilus$. The implications of these results with respect to the input O_2 and output H^+/H_2O channels are discussed.

2. Materials and methods

Mammalian CcO was isolated from beef hearts [7]. The purification of cbb_3 , ba_3 , and caa_3 oxidase was according to Refs. [19-21]. The pD solutions prepared in D₂O buffers were measured by using a pH meter and assuming pD = pH(observed) +0.4. Dithionite reduced samples were exposed to 1 atm CO (1 mM) in an anaerobic cell to prepare the carbonmonoxy adduct and loaded anaerobically into a cell with CaF₂ windows and a 0.025-mm spacer. CO gas was obtained from Messer (Germany) and isotopic CO (¹³CO) was purchased from Isotec. FTIR spectra were obtained from 400-500 µM samples with a Bruker Equinox 55 FTIR spectrometer equipped with a liquid nitrogen cooled mercury cadmium telluride detector. The 532-nm pulse from a Continuum Nd-YAG laser (7-ns width, 3 Hz) was used as a pump light (3–4 mJ/pulse) to photolyze the heme a_3 -CO complex. The time-resolved FTIR spectra were obtained with spectral resolution of 8 cm⁻¹ and 5-µs time resolution for the 5 μs –4 ms measurements or 100 μs for the 100 μs – 80 ms measurements. Total number of slices was 800, with 40 slices before and 760 after the laser firing. A total of 10 co-additions per retardation data point was collected. Changes in intensity were recorded with an MCT detector, amplified (dc-coupled) and digitized with a 200-kHz, 16-bit,

analog-to-digital converter. Blackman—Harris three-term apodization function with 32-cm $^{-1}$ phase resolution and the Mertz phase correction algorithm were used. Difference spectra were calculated as $\Delta A = -\log(I_{\rm S}/I_{\rm R})$. Optical absorbance spectra were recorded before and after FTIR measurements in order to assess sample stability with a Perkin-Elmer Lamda 20 UV–VIS spectrometer.

3. Results and discussion

Fourier transform infrared difference spectroscopy (FTIR) is a powerful structure-specific technique for exploring changes that occur to individual amino acid residues in a protein as a result of changes to redox and ligation states [13–22]. The FTIR difference approach has also been used to investigate the CO-photoproduct and the electrochemical oxidized-minus-reduced difference spectra of heme-copper oxidases. In the latter case, the perturbation is the redox state of the metal centers, whereas in the former is the photodissociation of CO from the heme. With the timeresolved step-scan approach, recently it was demonstrated that although the exogenous ligand vibrations (CO) were essentially identical between the room- and low-temperature spectra of photodissociated CO-cytochromes aa_3 and bo_3 , significant differences exist in the protein bands between these temperatures. It was suggested that these differences originate from the fact that at room temperature, CO has dissociated from CuB, whereas in the low-temperature (80 K) the final state has CO coordinated to Cu_B [14].

3.1. Mammalian cytochrome aa₃ dynamics

Infrared and UV–VIS experiments of CO-bound aa_3 have shown that CO dissociates from Cu_B on a microsecond time scale $(k_{-1}=5\times10^5~{\rm s}^{-1})$, and a thermal equilibrium between Cu_B -bound and "free" CO in solution (K=87 ${\rm M}^{-1}$) is established [23]. The CO, however, does not return to heme a_3 for milliseconds ($k_2=1030~{\rm s}^{-1}$). Fig. 1 shows the TRS² spectra ($t_d=5~{\rm \mu s}-4~{\rm ms},~8~{\rm cm}^{-1}$ spectral resolution) of mammalian fully reduced aa_3 -CO subsequent to CO photolysis in D_2 O. We detect no intensity changes of the 1965 cm⁻¹ peak from $t_d=5-750~{\rm \mu s}$, which implies the lack

His-Fe²⁺-CO,
$$Cu_B^{1+} \to \{His-Fe^{2+}\}^*$$
, Cu_B^{1+} -CO \to CO (sol.), Cu_B , $His-Fe^{2+} \to Fe^{2+}$ -CO, Cu_B^{1+} (2)

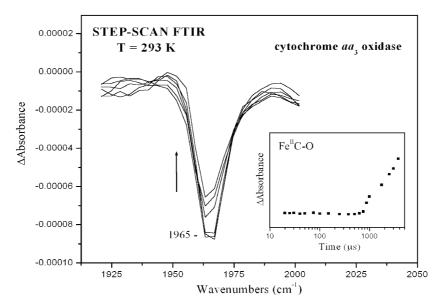


Fig. 1. Time-resolved step-scan FTIR difference spectra of the photolyzed CcO-CO complex at 25, 100, 500, 1000, 2000, and 3500 μ s. Inset: Plot of the 1965 cm⁻¹ (ν_{FeC-O} , squares) mode vs. time subsequent to CO photolysis.

of CO rebinding to heme a_3 . At times longer than 750 µs, the intensity increase of the 1965-cm⁻¹ peak signals the onset of ligand rebinding to heme a_3 . This behavior is analogous to that observed by Bailey et al. [14] and Findsen et al. [24]. The former authors proposed that on the time scale CO leaves Cu_B ($t_{1/2} = 1.5 \mu s$), there are no intrinsic heme barriers to recombination with heme a_3 because typical geminate recombination rates are nanoseconds. Thus, another barrier must form which prevents CO recombination prior to 1 ms, and suggested as possible candidates either a local protein conformational change or the binding of an endogenous ligand which blocks the distal ligation site. Time-resolved ps RR experiments [25] have demonstrated that heme a_3^{2+} is five-coordinate, high spin, with proximal histidine ligation to the heme at the earliest times following CO photodissociation, and thus, no endogenous ligand blocks the distal binding site of heme a_3 . Thus, it is highly unlikely that the barrier is the result of an endogenous ligand binding that blocks the distal ligation site, and a local protein conformational change is the most probable cause of its formation. Obviously, the heme a_3 -Cu_B pocket is constructed in such a manner that results in rapid migration of the photodissociated CO from heme a_3 to Cu_B and slow recombination of CO to heme a_3 .

3.2. Cytochrome cbb3 dynamics

The microaerobic cbb_3 -type cytochrome c oxidase isolated from P. stutzeri is an isoenzyme in the family of cytochrome c oxidases (CcO) [19]. It contains three c-type lowspin hemes, one low-spin b-type heme, and a heme b_3 -Cu_B binuclear center. The structural characteristics of the binuclear center in cbb_3 are unique when compared to those of aa_3 type oxidases; it lacks the hydroxyethylfarnesyl side chain

and the highly conserved among the heme-copper oxidases tyrosine 244, both of which have been proposed to play a crucial role in the properties of the binuclear center. Data on the photodynamics of the CO-bound adduct of cytochrome cbb_3 in conjunction with those of the aa_3 -type oxidase can be interpreted to yield specific information concerning electronic and heme/Cu_B geometric properties, and heme/Cu_B-axial ligand bonding interactions. The time-resolved FTIR data revealed that in cbb_3 -type oxidase the decay of the transient Cu_B-CO complex is concurrent with the formation of the heme b_3 -CO complex, and the v(CO) of Cu_B at 2065 cm⁻¹, despite the lack of the cross-link tyrosine 244 is similar to that observed in cytochrome aa_3 [23] and cytochrome bo_3 [14]. The former observation contrasts sharply with the wellknown behaviour of CO recombination to the heme Fe of cytochrome aa_3 and bo_3 -type oxidases. The cbb_3 is the first heme-copper oxidase reported in which the decay of the Cu_B-CO complex is accompanied by the formation of the Fe-CO complex at room temperature. It is also the only oxidase with an open heme-copper structure lacking the α -form of the heme, thus the distal interactions due to CuB and its local environment, and also lacking the hydrogen bonding between the farnesyl hydroxyl and the tyrosine hydroxyl which couples together the heme a_3 and Cu_B .

3.3. Cytochrome caa₃ dynamics

Fourier transform infrared and step-scan time-resolved FTIR difference spectra have been reported for the carbon-monoxy cytochrome caa_3 from T. thermophilus [21]. A major C–O mode of heme a_3 at 1958 cm⁻¹ and two minor modes at 1967 and 1975 cm⁻¹ (7:1:1) have been identified at room temperature, and remained unchanged in H_2O/D_2O exchange. The time-resolved FTIR data indicate that the

Table 1 Kinetic parameters for CO binding to mammalian aa_3 , cbb_3 , caa_3 and ba_3 from T, thermophilus

	$k_2 (s^{-1})$	$k_{-1} (s^{-1})$	Reference
aa_3	1030	7×10^{5}	[23]
cbb_3	4.8×10^{3}	5.8×10^{3}	[19]
caa ₃	34.1	$2.3 \times 10^4 (35\%)$	[21]
		36.3 (65%)	
ba_3	28.6	34.5	[20]

transient Cu_B^{1+} -CO complex is formed at room temperature as revealed by the CO stretching mode at 2062 cm⁻¹. Therefore, the caa_3 enzyme is the only documented member of the heme-copper superfamily whose binuclear center consists of an a_3 -type heme of a β -form and a Cu_B atom of an α -form. These results illustrate that the properties of the binuclear center in other oxidases resulting in the α -form are not required for enzymatic activity. Dissociation of the transient Cu_B^{1+} -CO complex is biphasic. The rate of decay is $2.3 \times 10^4 \text{ s}^{-1}$ (fast phase, 35%) and 36.3 s⁻¹ (slow phase, 65%). The observed rate of rebinding to heme a_3 is 34.1 s⁻¹. Table 1 summarizes the CO kinetic properties in heme-copper oxidases.

3.4. Cytochrome ba₃ dynamics

We have reported the first evidence for the existence of the equilibrium Cu_B¹⁺-CO species of CO-bound reduced cytochrome ba_3 from T. thermophilus at room temperature [20]. The frequency of the C-O stretching mode of Cu_B¹⁺-CO is located at 2053 cm⁻¹ and remains unchanged in H₂O/D₂O exchanges and between pH/pD 5.5 and 9.7, indicating that the chemical environment does not alter the protonation state of the CuB histidine ligands. The time-resolved step-scan FTIR difference spectra indicate that the rate of decay of the transient Cu_B¹⁺-CO complex is 34.5 s⁻¹ and rebinding to heme a_3 occurs with $k_2 = 28.6$ s⁻¹. The rate of decay of the transient Cu_B¹⁺-CO complex displays similar time constant as the absorption changes at 1694(+)/1706(-), attributed to perturbation of the heme a_3 propionates (COOH). The v(C-O) of the transient Cu_B¹⁺-CO species is the same as that of the equilibrium Cu_B¹⁺-CO species and remains unchanged in the pD range 5.5-9.7, indicating that no structural change takes place at Cu_B between these states. The transient binding of CO to Cu_B is dynamically linked to structural changes at the ring A propionate of heme a_3 (1694/1706 cm⁻¹) and concomitantly to a change in the local environment of Asp372 $(1726 \text{ cm}^{-1}).$

We have also reported the first study of O_2 migration in the putative O_2 channel of cytochrome ba_3 [26,27], and its effect to the properties of the binuclear heme a_3 -Cu_B center of cytochrome ba_3 from T. thermophilus [22]. The FTIR spectra of the ba_3 -CO complex demonstrate that in the presence of 60-80 μ M O_2 , the ν (C-O) of Cu_B^{-1} -CO at 2053 cm⁻¹ (Complex A) shifts to 2045 cm⁻¹, and remains

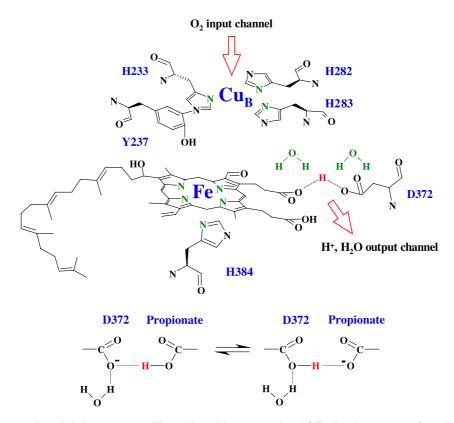


Fig. 2. Model for input/output channels in heme-copper oxidases. The residues are numbered following the sequence of cytochrome ba_3 oxidase from T. thermophilus (For color see online version).

unchanged in H₂O/D₂O exchanges and in the pH 6.5-9.0 range. The frequencies, but not the intensities, of the C-O stretching modes of heme a_3 -CO (complex **B**), however, remain unchanged. The change in the v(CO) of complex A results in an increase of k_{-2} , and thus to a higher affinity of Cu_B for exogenous ligands. The step-scan time-resolved FTIR difference spectra indicate that the rate of decay of the transient Cu_B¹⁺-CO complex at pH 6.5 is 30.4 s⁻¹, and 28.3 s^{-1} in the presence of O_2 . The rebinding to heme a_3 occurs with $k_2 = 26.3 \text{ s}^{-1}$, and 24.6 s⁻¹ in the presence of O₂. The results provide solid evidence that in cytochrome ba_3 the ligand delivery channel is located at the Cu_B site, which is the ligand entry to the heme a_3 pocket. We suggest that the properties of the O2 channel are not limited to facilitate ligand diffusion to the active site, but are extended in controlling the dynamics and reactivity of the reactions of ba_3 with O_2 and NO.

3.5. Model for input/output channels in heme-copper oxidases

The determination of the structures in the binuclear center upon CO binding and the photodissociation/rebinding process remains an important problem that is central to elucidating the dynamics of heme-copper oxidases. The data presented here allow analysis of the general structural perturbations that are responsible for the unique conformations of heme-copper oxidases. Based on the existing data, we present a model (Fig. 2) for the O₂ input channel located at the Cu_B site and an H⁺/H₂O output channel located at the ring A propionate of heme *a*₃-Asp372-H₂O site (*T. thermo-philus* numbering), which is conserved among all structurally known oxidases. TRS²-FTIR experiments are in progress to address these issues.

Acknowledgements

This work is dedicated to the memory of Jerry. C.V. was a graduate student, post-doc, and collaborator of Jerry, but most importantly part of his extended family. I was touched by Jerry's friendship and inspired by his expectations of high standards. This work was partially supported from the Greek Ministry of Education.

References

- S. Ferguson-Miller, G.T. Babcock, Heme/copper terminal oxidases, Chem. Rev. 96 (1996) 2889–2907.
- [2] S. Han, Y.-C. Ching, D.L. Rousseau, Ferryl and hydroxy intermediates in the reaction of oxygen with reduced cytochrome c oxidase, Nature 348 (1990) 89–90.
- [3] S. Han, S. Takahashi, D.L. Rousseau, Time dependence of the catalytic intermediates in cytochrome c oxidase, J. Biol. Chem. 275 (1999) 1910–1919.
- [4] T. Ogura, S. Hirota, D.A. Proshlyakov, K. Shinzawa-Itoh, S.

- Yoshikawa, T. Kitagawa, Time-resolved resonance Raman evidence for tight coupling between electron transfer and proton pumping of cytochrome c oxidase upon the change from the Fe(V) oxidation level to the Fe(IV) oxidation level, J. Am. Chem. Soc. 118 (1996) 5443–5449.
- [5] Y. Kim, K. Shinzawa-Itoh, S. Yoshikawa, T. Kitagawa, Presence of the heme-oxo intermediate in oxygenation of carbon monoxide by cytochrome *c* oxidase revealed by resonance Raman spectroscopy, J. Am. Chem. Soc. 123 (2001) 757–758.
- [6] C. Varotsis, W.H. Woodruff, G.T. Babcock, Time-resolved Raman detection of v(Fe-O) in an early intermediate in the reduction of oxygen by cytochrome oxidase, J. Am. Chem. Soc. 111 (1989) 6439–6440, 112 (1990) 1297.
- [7] C. Varotsis, Y. Zhang, E.H. Appelman, G.T. Babcock, Resolution of the reaction sequence during the reduction of O₂ by cytochrome oxidase, Proc. Natl. Acad. Sci. U. S. A. 90 (1993) 237–241.
- [8] C. Varotsis, W.H. Woodruff, G.T. Babcock, Direct detection of a dioxygen adduct of cytochrome a₃ in the mixed valence cytochrome oxidase/dioxygen reaction, J. Biol. Chem. 265 (1990) 11131–11136.
- [9] C. Varotsis, G.T. Babcock, Photolytic activity of early intermediates in dioxygen activation and reduction by cytochrome oxidase, J. Am. Chem. Soc. 117 (1995) 11260–11269.
- [10] D.A. Proshlyakov, M.A. Pressler, G.T. Babcock, Dioxygen activation and bond cleavage by mixed-valence cytochrome oxidase, Proc. Natl. Acad. Sci. U. S. A. 95 (1998) 8020–8025.
- [11] E. Pinakoulaki, U. Pfitzner, B. Ludwig, C. Varotsis, The role of the cross-link His-Tyr in the functional properties of the binuclear center in cytochrome c oxidase, J. Biol. Chem. 277 (2002) 13563–13568.
- [12] T.K. Das, C. Pecoraro, F.L. Tomson, R.B. Gennis, D.L. Rousseau, The post-translational modification in cytochrome oxidase is required to establish a functional environment of the catalytic site, Biochemistry 37 (1998) 14471–14476.
- [13] F. Tomson, J.A. Bailey, R.B. Gennis, C.J. Unkefer, Z. Li, L.A. Silks, R.A. Martinez, R.J. Donahoe, R.B. Dyer, W.H. Woodruff, Direct infrared detection of the covalently ring linked His-Tyr structure in the active site of the Heme-Copper oxidases, Biochemistry 41 (2002) 14383–14390.
- [14] J.A. Bailey, F.L. Tomson, S.L. Mecklenburg, G.M. MacDonald, A. Katsonouri, A. Puustinen, R.B. Gennis, W.H. Woodruff, R.B. Dyer, Time-resolved step-scan Fourier transform infrared spectroscopy of the CO adducts of bovine cytochrome c oxidase and of cytochrome bo₃ from Escherichia coli, Biochemistry 41 (2002) 2675–2683.
- [15] T. Iwase, C. Varotsis, K. Shinzawa-Itoh, S. Yoshikawa, T. Kitagawa, Infrared evidence for CuB ligation of photodissociated CO of cytochrome c oxidase at ambient temperatures and accompanied deprotonation of a carboxyl side chain of protein, J. Am. Chem. Soc. 121 (1999) 1415–1416.
- [16] P. Hellwig, U. Pfitzner, J. Behr, B. Rost, R.P. Pasavento, W.V. Donk, R.B. Gennis, H. Michel, B. Ludwig, W. Mäntele, Vibrational modes of tyrosines in cytochrome c oxidase from *Paracoccus denitrificans*: FTIR and electrochemical studies on Tyr-D₄-labeled and on Tyr280His and Tyr35Phe mutant enzymes, Biochemistry 41 (2002) 9116–9125.
- [17] D. Heitbrink, H. Sigurdson, C. Bowlwien, P. Brzezinski, J. Heberle, Transient binding of CO to Cu_B in cytochrome c oxidase is dynamically linked to structural changes around a carboxyl group: a time-resolved step-scan Fourier transform infrared investigation, Biophys. J. 82 (2002) 1–10.
- [18] P.R. Rich, J. Breton, FTIR studies of the CO and cyanide adducts of fully reduced bovine cytochrome c oxidase, Biochemistry 40 (2001) 6441–6449.
- [19] S. Stavrakis, K. Koutsoupakis, E. Pinakoulaki, A. Urbani, M. Saraste, C. Varotsis, Decay of the transient Cu_B-CO complex is accompanied by formation of the heme Fe-CO complex of cytochrome *cbb*₃-CO at ambient temperature: evidence from time-resolved Fourier transform infrared spectroscopy, J. Am. Chem. Soc. 124 (2002) 3814–3815.
- [20] K. Koutsoupakis, S. Stavrakis, E. Pinakoulaki, T. Soulimane, C.

- Varotsis, Observation of the equilibrium ${\rm Cu_{B}\text{-}CO}$ complex and functional implications of the transient heme a_3 propionates in cytochrome $ba_3\text{-}{\rm CO}$ from *Thermus thermophilus*, J. Biol. Chem. 277 (2002) 32860-32866.
- [21] E. Pinakoulaki, T. Soulimane, C. Varotsis, Fourier transform infrared (FTIR) and step-scan time-resolved FTIR spectroscopies reveal a unique active site in cytochrome *caa*₃ oxidase from *Thermus thermo-philus*, J. Biol. Chem. 277 (2002) 32867–32874.
- [22] K. Koutsoupakis, S. Stavrakis, T. Soulimane, C. Varotsis, Oxygen-linked equilibrium Cu_B-CO species in cytochrome ba₃ oxidase from *Thermus thermophilus*: implications for an oxygen channel at the Cu_B site, J. Biol. Chem. 278 (2003) 14893–14896.
- [23] W.H. Woodruff, Coordination dynamics of heme-copper oxidases. The ligand shuttle and the control and coupling of electron transfer and proton translocation, J. Bioenerg. Biomembranes 25 (1993) 177–188.

- [24] E.W. Findsen, J. Centeno, G.T. Babcock, M.R. Ondrias, Cytochrome a₃ hemepocket relaxation subsequent to ligand photolysis from cytochrome oxidase, J. Am. Chem. Soc. 109 (1987) 5367–5372.
- [25] J.P.M. Schelvis, G. Deinum, C.A. Varotsis, S. Fergusson-Miller, G.T. Babcock, Low-power picosecond resonance Raman evidence for histidine ligation to heme a₃ after photodissociation of CO from cytochrome c oxidase, J. Am. Chem. Soc. 119 (1997) 8409–8416.
- [26] D.D. Lemon, M.W. Calhoun, R.B. Gennis, W.H. Woodruff, The gateway to the active site of Heme-Copper oxidases, Biochemistry 32 (1993) 11953–11956.
- [27] T. Soulimane, G. Buse, G.P. Bourenkov, H.D. Bartunik, R. Huber, M.E. Than, Structure and mechanism of the aberrant ba₃-cytochrome c oxidase from *Thermus thermophilus*, EMBO J. 19 (2000) 1766–1776.